

OpenFOAM® Basic Training

Tutorial Nine

3rd edition, Feb. 2015

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

OpenFOAM

®
 Basic Training

Example Nine

Editors and Contributors:

 Bahram Haddadi (TU Wien)

 Christian Jordan (TU Wien)

 Jozsef Nagy (JKU Linz)

 Clemens Gößnitzer (TU Wien)

 Vikram Natarajan (TU Wien)

 Sylvia Zibuschka (TU Wien)

 Michael Harasek (TU Wien)

Vienna University of Technology
Institute of Chemical Engineering

Cover picture from:

 Bahram Haddadi, The image presented on the cover page has been prepared

using the Vienna Scientific Cluster (VSC).

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:
 to Share — to copy, distribute and transmit the work
 to Remix — to adapt the work
Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the work).

Noncommercial — You may not use this work for commercial purposes.
Share Alike — If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one.
With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

Other Rights — In no way are any of the following rights affected by the license:
Your fair dealing or fair use rights, or other applicable copyright exceptions and

limitations;
The author's moral rights;
Rights other persons may have either in the work itself or in how the work is used, such

as publicity or privacy rights.
Notice — For any reuse or distribution, you must make clear to others the license terms

of this work. The best way to do this is with a link to this web page.

http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content

OpenFOAM

®
 Basic Training

Example Nine

compressibleInterFoam – depthCharge3D

Simulation

Use the compressibleInterFoam solver, simulate the example case for 0.5 s.

Objectives

 Understanding the difference between incompressible and compressible

solvers

 Understanding parallel processing and different discretization methods

Post processing

See the results in ParaView.

OpenFOAM

®
 Basic Training

Example Nine

Step by step simulation

Copy tutorial

Copy the tutorial from following directory to your working directory:

~/OpenFOAM/OpenFOAM-2.3.0/tutorials/multiphase/

compressibleInterFoam/laminar/depthCharge3D

0 directory

Copy alpha.water.org, p_rgh.org, p.org and T.org to alpha.water, p_rgh, p and T files.

constant directory

Phases and common physical properties of the two phases are set in the

thermophysicalProperties file. Individual phase properties are set in

thermophysicalProperties.phase files, e.g. thermophysicalProperties.air.

// * //

phases (water air);

pMin pMin [1 -1 -2 0 0 0 0] 10000;

sigma sigma [1 0 -2 0 0 0 0] 0.07;

// *** //

system directory

The decomposeParDict file includes the parallel settings, such as the number of

domains (partitions) and also how the domain is going to be divided into these

subdomains for parallel processing.

// * //

numberOfSubdomains 4;

method hierarchical;

simpleCoeffs

{

 n (1 4 1);

 delta 0.001;

}

hierarchicalCoeffs

{

 n (1 4 1);

 delta 0.001;

 order xyz;

}

manualCoeffs

{

 dataFile "";

}

distributed no;

roots ();

// *** //

OpenFOAM

®
 Basic Training

Example Nine

numberOfSubdomains should equal the number of cores used. method should

show the method to be used. In the above example, the case is simulated with the

hierarchical method and 4 processors.

If the simple method is being used, the parameter n must be changed accordingly.

The three numbers (1 4 1) indicate the number of pieces the mesh is split into in

the x, y and z directions, respectively. Their multiplication result should be equal to

numberOfSubdomains.

If the hierarchical method is being used, these parameters and also the order in

which the mesh should be split up in each direction should be provided.

If the scotch method is being used, then no user-supplied parameters are necessary

except for the number of subdomains.

There is also a parameter delta, known as the cell skew factor. This factor is set to a

default value of 0.001, and measures to what extent skewed cells should be

accounted for.

Note: In order to check the quality of the mesh, the checkMesh tool can be used (run it

from main case directory). If the message “Mesh OK” is displayed – the mesh is fine

and no corrections need to be done.

If the mesh fails in one or more tests, try to recreate or refine the mesh for a better

mesh quality (less non-orthogonally and skewness). If the error exists after correcting

the mesh then a possible course of action is to increase the delta parameter (for

example: to 0.01) and then rerun the blockMesh and checkMesh tools.

If non-orthogonal cells exist in a mesh, another option is using non-orthogonal

corrections in the fvSolution file in the algorithm sub-dictionary (e.g. PIMPLE or

PISO). Usually using 1 or 2 as nNonOrthogonalCorrectors is enough.

Running simulation

>blockMesh

>setFields

For running the simulation in parallel mode the computing domain needs to be

divided into subdomains and a core should be assigned to each subdomain. This is

done by following command:

>decomposePar

This decomposes the mesh according to the supplied instructions. One possible source

of error is the product of the parameters in n does not match up to the number of the

subdomains. This appears for the simple and hierarchical methods.

After executing this command four new directories will be made in the simulation

directory (processor0, processor1, processor2 processor3), and each subdomain

calculation will be saved in the respective processor directory.

OpenFOAM

®
 Basic Training

Example Nine

Note: When the domain is divided to subdomains in parallel processing new

boundaries are defined. The data should be exchanged with the neighbor boundary,

which it is connected to in the main domain.

>mpirun -np <No of cores> solver –parallel > log

<No of cores> is the number of cores being used. solver is the solver for this

simulation. For example, if 4 cores are desired, and the solver is

compressibleInterFoam following command is used:

>mpirun -np 4 compressibleInterFoam -parallel > log

> log is the filename for saving the simulation status data, instead of printing them

to the screen. For checking the last information which is written to this file the

following command can be used during the simulation running:

>tail –f log

Note: Before running any simulation, it is important to run the top command (type the

top command in the terminal), to check the number of cores currently used on the

machine. Check the load average. This is on the first line and shows the average

number of cores being used. There are three numbers displayed, showing the load

averages across three different time scales (one, five and 15 minute respectively).

Add the number of cores you plan to use to this number – and you will get the

expected load average during your simulation. This number should be less than the

total number of cores in the machine – or the simulation will be slowed or the

machine will crash (if you run out of memory). If you do run on a multi user server it

is recommended to leave at least a few cores free, to allow for any fluctuations in the

machine load.

Note: top command execution can be interrupted by typing q (or ctrl+c)

The simulation can take several hours, depending on the size of the mesh and time

step size.

Exporting simulation

For exporting data for post processing, at first all the processors data should be put

together and a single combined directory for each time step was created. By executing

the following command all the cores data will be combined and new directories for

each time step will be created in the simulation main directory:

>reconstructPar

Convert the data to ParaView format:

>foamToVTK

Note: To do the reconstruction or foamToVTK conversion from a start time until an

end time the following flags can be used:

>reconstructPar –time [start time name, e.g. 016]:[end time

name, e.g. 020]

OpenFOAM

®
 Basic Training

Example Nine

>foamToVTK –time [start time name, e.g. 016]:[end time name,

e.g. 020]

Using above commands without entering end time will do the reconstruction or

conversion from start time to the end of available data:

>reconstructPar –time [start time name, e.g. 016]:

>foamToVTK –time [start time name, e.g. 016]:

For reconstructing or converting only one time step the commands should be used

without end time and “:”:

>reconstructPar –time [start time name, e.g. 016]

>foamToVTK –time [start time name, e.g. 016]

OpenFOAM

®
 Basic Training

Example Nine

The simulation results are as follows:

0 s

0.05 s

0.1 s

0.15 s

0.20 s

0.25 s

0.3 s

0.4 s

0.5 s

Figure 9.1 3D depth charge, alpha = 0.5 iso-surfaces, parallel simulation

OpenFOAM

®
 Basic Training

Example Nine

Manual method

The manual method for decomposition is slightly different from the other three. In

order to use it:

Set the decomposeParDict file as any other simulation. For decomposition method,

choose either simple, hierarchical or scotch. Set the number of cores to the same

number which is going to be used for manual.

>decomposePar –cellDist

Once the decomposition is done, check the cellDecomposition file in the constant

directory. It should have a format similar to:

// * //

1024000

(

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1 ...)

// *** //

Note: If the above output is not displayed, but a stream of NUL characters, your text

editor is probably printing binary. To fix this, open system/controlDict, and change

the writeFormat field from binary to ascii.

The first number n after the header, but before the opening brackets, 1024000 in this

example, refers to the number of points in the mesh. Within the brackets, n lines

follow. Each line contains one number between 0 and n-1, where n is the number of

cores to be used for the computation. This number refers to the core being used to

compute the corresponding cell in the points file in the constant directory. For

example, if the second line in the points file brackets reads (0.125 0 0) and the

second line in the cellDecomposition directoy reads 0, this means that the cell

(0.125 0 0) will be processed by processor 0.

This cellDecomposition file can now be edited. Although this can be done manually,

it is probably not feasible for any sufficiently large mesh. The process must thus be

OpenFOAM

®
 Basic Training

Example Nine

automated by writing a script to populate the cellDecomposition file according to the

desired processor breakdown.

When the new file is ready, save it under a different name:

>cp cellDecomposition manFile

Now, edit the decomposeParDict file. Select decomposition method manual, and for

the dataFile field in the manual coeffs range, specify the path to the file which

contains the manual decomposition. Note that OpenFOAM
®
 searches in the constant

directory by default, in case relative paths are being used:

// * //

numberOfSubdomains 4;

method manual;

simpleCoeffs

{

 n (1 4 1);

 delta 0.001;

}

hierarchicalCoeffs

{

 n (1 4 1);

 delta 0.001;

 order xyz;

}

manualCoeffs

{

 dataFile "manFile";

}

distributed no;

roots ();

// *** //

Run the simulation as usual.

Visualizing the processor breakdown

It may be interesting to visualize how exactly OpenFOAM
®
 breaks down the mesh.

This can be easily visualized using ParaView. After running the simulation, but before

running the reconstructPar command, repeat the following for each of the processor

directories:

>cd processor<n>

where n is the processor number

>foamToVTK

convert the individual processor files to VTK, next, open ParaView:

>paraview &

For each of the processor directories, perform the following steps:

OpenFOAM

®
 Basic Training

Example Nine

- Open the VTK files in the relevant processor directory

- Double click them to open them and click on “Apply”

- The part of the mesh decomposed by that core will appear, in grey.

- Change the color in the drop-down menus in the toolbar. This is to ensure that each

individual part can be easily seen.

Once this is done for all processors, the entire mesh will appear. However, the

processor regions can now easily be seen in a different color.

In order to save this, there are two options. The first option is to take a screenshot:

File > Save a screenshot

The second option is to save the settings and modifications as a ParaView state file.

File > Save State

The current settings and modifications can then be easily recovered by:

File > Load State

Saving the state allows changes to be made afterwards. Saving a screenshot keeps

only a picture, while losing the ability to make changes after exiting ParaView. Doing

both is recommended.

